Sunday, October 2, 2022
HomeNanotechnologyRising nanobiotechnology for exact theranostics of hepatocellular carcinoma | Journal of Nanobiotechnology

Rising nanobiotechnology for exact theranostics of hepatocellular carcinoma | Journal of Nanobiotechnology


  • Yang JD, Hainaut P, Gores GJ. A world view of hepatocellular carcinoma: developments, threat, prevention and administration. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zamboni CG, Kozielski KL, Vaughan HJ, Nakata MM, Kim J, Higgins LJ, et al. Polymeric nanoparticles as cancer-specific DNA supply vectors to human hepatocellular carcinoma. J Management Launch. 2017;263:18–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Erratum: International most cancers statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 nations. CA Most cancers J Clin. 2020,70(4):313.

  • Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380(15):1450–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen W, Desert R, Ge X, Han H, Track Z. The matrisome genes from hepatitis B-related hepatocellular carcinoma unveiled. Hepatol Commun. 2021;5(9):1571–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • <Tips for Analysis and Therapy of Main Liver Most cancers in China (2022 Version).pdf>. 2022.

  • Mohkam Ok, Dumont PN, Manichon AF, Jouvet JC, Boussel L, Merle P, et al. No-touch multibipolar radiofrequency ablation vs. surgical resection for solitary hepatocellular carcinoma starting from 2 to five cm. J Hepatol. 2018;68(6):1172–80.

    PubMed 
    Article 

    Google Scholar
     

  • Xu XL, Liu XD, Liang M, Luo BM. Radiofrequency ablation versus hepatic resection for small hepatocellular carcinoma: systematic overview of randomized managed trials with meta-analysis and trial sequential evaluation. Radiology. 2018;287(2):461–72.

    PubMed 
    Article 

    Google Scholar
     

  • Choi JW, Lee JM. Radiofrequency ablation utilizing internally cooled moist electrodes in bipolar mode for the therapy of recurrent hepatocellular carcinoma after locoregional therapy: A randomized potential comparative examine. PLoS ONE. 2020;15(9):e0239733.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hu WY, Wei HY, Li KM, Wang RB, Xu XQ, Feng R. LINC00511 as a ceRNA promotes cell malignant behaviors and correlates with prognosis of hepatocellular carcinoma sufferers by modulating miR-195/EYA1 axis. Biomed Pharmacother. 2020;121:109642.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang A, Yang XR, Chung WY, Dennison AR, Zhou J. Focused remedy for hepatocellular carcinoma. Sign Transduct Goal Ther. 2020;5(1):146.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Iranshahy M, Rezaee R, Karimi G. Hepatoprotective exercise of metformin: a brand new mission for an previous drug? Eur J Pharmacol. 2019;850:1–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for sufferers with hepatocellular carcinoma who progressed on sorafenib therapy (RESORCE): a randomised, double-blind, placebo-controlled, section 3 trial. Lancet (London, England). 2017;389(10064):56–66.

    CAS 
    Article 

    Google Scholar
     

  • Qin S, Li Q, Gu S, Chen X, Lin L, Wang Z, et al. Apatinib as second-line or later remedy in sufferers with superior hepatocellular carcinoma (AHELP): a multicentre, double-blind, randomised, placebo-controlled, section 3 trial. Lancet Gastroenterol Hepatol. 2021;6(7):559–68.

    PubMed 
    Article 

    Google Scholar
     

  • Qin S, Ren Z, Meng Z, Chen Z, Chai X, Xiong J, et al. Camrelizumab in sufferers with beforehand handled superior hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, section 2 trial. Lancet Oncol. 2020;21(4):571–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu J, Shen J, Gu S, Zhang Y, Wu L, Wu J, et al. Camrelizumab together with apatinib in sufferers with superior hepatocellular carcinoma (RESCUE): a nonrandomized, open-label section II trial. Clin Most cancers Res. 2021;27(4):1003–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yau T, Kang YK, Kim TY, El-Khoueiry AB, Santoro A, Sangro B, et al. Efficacy and security of nivolumab plus ipilimumab in sufferers with superior hepatocellular carcinoma beforehand handled with sorafenib: the checkmate 040 randomized medical trial. JAMA Oncol. 2020;6(11): e204564.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu J, Zhang Y, Jia R, Yue C, Chang L, Liu R, et al. Anti-PD-1 antibody SHR-1210 mixed with apatinib for superior hepatocellular carcinoma, gastric, or esophagogastric junction most cancers: an open-label, dose escalation and growth examine. Clin Most cancers Res. 2019;25(2):515–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu AX, Kang YK, Yen CJ, Finn RS, Galle PR, Llovet JM, et al. Ramucirumab after sorafenib in sufferers with superior hepatocellular carcinoma and elevated α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, section 3 trial. Lancet Oncol. 2019;20(2):282–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, et al. Cabozantinib in sufferers with superior and progressing hepatocellular carcinoma. N Engl J Med. 2018;379(1):54–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 nations. CA Most cancers J Clin. 2021;71(3):209–49.

    PubMed 
    Article 

    Google Scholar
     

  • Pandey P, Rahman M, Bhatt PC, Beg S, Paul B, Hafeez A, et al. Implication of nano-antioxidant remedy for therapy of hepatocellular carcinoma utilizing PLGA nanoparticles of rutin. Nanomedicine (Lond). 2018;13(8):849–70.

    CAS 
    Article 

    Google Scholar
     

  • Wu H, Wang MD, Liang L, Xing H, Zhang CW, Shen F, et al. Nanotechnology for hepatocellular carcinoma: from surveillance, prognosis to administration. Small. 2021;17(6):e2005236.

    PubMed 
    Article 

    Google Scholar
     

  • Fan W, Yung B, Huang P. Nanotechnology for multimodal synergistic most cancers remedy. Chem Rev. 2017;117(22):13566–638.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu JN, Bu W. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem Soc Rev. 2017;117(9):6160–224.

    CAS 
    Article 

    Google Scholar
     

  • Ni D, Bu W, Ehlerding EB, Cai W, Shi J. Engineering of inorganic nanoparticles as magnetic resonance imaging distinction brokers. Chem Soc Rev. 2017;46(23):7438–68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Verslype C, Rosmorduc O, Rougier P. Hepatocellular carcinoma: ESMO-ESDO Medical Apply Tips for prognosis, therapy and follow-up. Ann Oncol. 2012. https://doi.org/10.1093/annonc/mds225.

    Article 
    PubMed 

    Google Scholar
     

  • Netea-Maier RT, Smit JWA, Netea MG. Metabolic modifications in tumor cells and tumor-associated macrophages: A mutual relationship. Most cancers Lett. 2018;413:102–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Campbell RB. Tumor physiology and supply of nanopharmaceuticals. Anticancer Brokers Med Chem. 2006;6(6):503–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dong X, Mumper RJ. Nanomedicinal methods to deal with multidrug-resistant tumors: present progress. Nanomedicine (Lond). 2010;5(4):597–615.

    CAS 
    Article 

    Google Scholar
     

  • Tran S, DeGiovanni PJ, Piel B, Rai P. Most cancers nanomedicine: a overview of current success in drug supply. Nanomedicine. 2017;6(1):44.


    Google Scholar
     

  • Bu LL, Yan J, Wang Z, Ruan H, Chen Q, Gunadhi V, et al. Advances in drug supply for post-surgical most cancers therapy. Biomaterials. 2019;219: 119182.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kumar V, Rahman M. Present standing and future instructions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine. Knowledgeable Opin Drug Deliv. 2021;18(6):673–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ji Y, Xiao Y, Xu L, He J, Qian C, Li W, et al. Drug-bearing supramolecular MMP inhibitor nanofibers for inhibition of metastasis and progress of liver most cancers. Adv Sci. 2018;5(8):1700867.

    Article 

    Google Scholar
     

  • Wang J, Meng J, Ran W, Lee RJ. Hepatocellular carcinoma progress retardation and PD-1 blockade remedy potentiation with artificial high-density lipoprotein. Nano Lett. 2019;19(8):5266–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liang Y, Fu X, Du C, Xia H, Lai Y, Solar Y. Enzyme/pH-triggered anticancer drug supply of chondroitin sulfate modified doxorubicin nanocrystal. Artif Cells Nanomed Biotechnol. 2020;48(1):1114–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cormode DP, Skajaa GO, Delshad A, Parker N, Jarzyna PA, Calcagno C, et al. A flexible and tunable coating technique permits management of nanocrystal supply to cell sorts within the liver. Bioconjug Chem. 2011;22(3):353–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dobrovolskaia MA, Aggarwal P, Corridor JB, McNeil SE. Preclinical research to know nanoparticle interplay with the immune system and its potential results on nanoparticle biodistribution. Mol Pharm. 2008;5(4):487–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sykes EA, Chen J, Zheng G, Chan WC. Investigating the impression of nanoparticle dimension on energetic and passive tumor concentrating on effectivity. ACS Nano. 2014;8(6):5696–706.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tsoi KM, MacParland SA, Ma XZ, Spetzler VN, Echeverri J, Ouyang B, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 2016;15(11):1212–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, et al. Particle dimension, floor coating, and PEGylation affect the biodistribution of quantum dots in dwelling mice. Small. 2009;5(1):126–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chi X, Zhang R, Zhao T, Gong X, Wei R, Yin Z, et al. Focused arsenite-loaded magnetic multifunctional nanoparticles for therapy of hepatocellular carcinoma. Nanotechnology. 2019;30(17): 175101.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gullotti E, Park J, Yeo Y. Polydopamine-based floor modification for the event of peritumorally activatable nanoparticles. Pharm Res. 2013;30(8):1956–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tao W, Zhang J, Zeng X, Liu D, Liu G, Zhu X, et al. Blended nanoparticle system primarily based on miscible structurally comparable polymers: a secure, easy, focused, and surprisingly excessive effectivity car for most cancers remedy. Adv Healthcare Mater. 2015;4(8):1203–14.

    CAS 
    Article 

    Google Scholar
     

  • Lee ES, Gao Z, Bae YH. Latest progress in tumor pH concentrating on nanotechnology. J Management Launch. 2008;132(3):164–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li Z, Zhang H, Han J, Chen Y. Floor Nanopore Engineering of 2D MXenes for Focused and Synergistic Multitherapies of Hepatocellular Carcinoma. Adv Mater. 2018;30(25):e1706981.

    PubMed 
    Article 

    Google Scholar
     

  • Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for focused intracellular drug and gene supply. J Management Launch. 2011;152(1):2–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saeed AO, Newland B, Pandit A, Wang W. The reverse of polymer degradation: in situ crosslinked gel formation by means of disulfide cleavage. Chem Commun (Camb). 2012;48(4):585–7.

    CAS 
    Article 

    Google Scholar
     

  • Li Z, Han J, Yu L, Qian X, Xing H, Lin H, et al. Synergistic sonodynamic/chemotherapeutic suppression of hepatocellular carcinoma by focused biodegradable mesoporous nanosonosensitizers. Adv Func Mater. 2018;28(26):1800145.

    Article 

    Google Scholar
     

  • Milosevic M, Fyles A, Hedley D, Hill R. The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid strain. Semin Radiat Oncol. 2004;14(3):249–58.

    PubMed 
    Article 

    Google Scholar
     

  • Khawar IA, Kim JH, Kuh HJ. Enhancing drug supply to stable tumors: priming the tumor microenvironment. J Management Launch. 2015;201:78–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen B, Dai W, Mei D, Liu T, Li S, He B, et al. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for mixed remedy with most cancers cell-targeted chemotherapeutic drug supply system. J Management Launch. 2016;241:68–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Perche F, Biswas S, Wang T, Zhu L, Torchilin VP. Hypoxia-targeted siRNA supply. Angew Chem Int Ed Engl. 2014;53(13):3362–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu B, Shang H, Liang X, Solar Y, Jing H, Han X, et al. Preparation of novel concentrating on nanobubbles conjugated with small interfering RNA for concurrent molecular imaging and gene remedy in vivo. FASEB J. 2019;33(12):14129–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu Z, Zhang J, Tian Y, Zhang L, Han X, Wang Q, et al. Focused supply of decreased graphene oxide nanosheets utilizing multifunctional ultrasound nanobubbles for visualization and enhanced photothermal remedy. Int J Nanomed. 2018;13:7859–72.

    CAS 
    Article 

    Google Scholar
     

  • Wang R, Luo Y, Yang S, Lin J, Gao D, Zhao Y, et al. Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the focused CT/MR dual-mode imaging of hepatocellular carcinoma. Sci Rep. 2016;6:33844.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shen JM, Li XX, Fan LL, Zhou X, Han JM, Jia MK, et al. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe(3)O(4) composite as a novel nanoscale molecular probe for early prognosis and remedy in hepatocellular carcinoma. Int J Nanomed. 2017;12:1183–200.

    CAS 
    Article 

    Google Scholar
     

  • Mintz Ok, Waidely E, Zhou Y, Peng Z, Al-Youbi AO, Bashammakh AS, et al. Carbon dots and gold nanoparticles primarily based immunoassay for detection of alpha-L-fucosidase. Anal Chim Acta. 2018;1041:114–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang NN, Lu CY, Shu GF, Li J, Chen MJ, Chen CM, et al. Gadolinium-loaded calcium phosphate nanoparticles for magnetic resonance imaging of orthotopic hepatocarcinoma and first hepatocellular carcinoma. Biomater Sci. 2020;8(7):1961–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Z, Chang Z, Lu M, Shao D, Yue J, Yang D, et al. Form-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene remedy of hepatocellular carcinoma. Biomaterials. 2018;154:147–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang JK, Zhou YY, Guo SJ, Wang YY, Nie CJ, Wang HL, et al. Cetuximab conjugated and doxorubicin loaded silica nanoparticles for tumor-targeting and tumor microenvironment responsive binary drug supply of liver most cancers remedy. Mater Sci Eng, C Mater Biol Appl. 2017;76:944–50.

    CAS 
    Article 

    Google Scholar
     

  • Wu D, Yu Y, Jin D, Xiao MM, Zhang ZY. Twin-aptamer modified graphene field-effect transistor nanosensor for label-free and particular detection of hepatocellular carcinoma-derived microvesicles. Anal Chem. 2020;92(5):4006–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu C, Li P, Fan N, Han J, Zhang W, Zhang W, et al. A dual-targeting functionalized graphene movie for speedy and extremely delicate fluorescence imaging detection of hepatocellular carcinoma circulating tumor cells. ACS Appl Mater Interfaces. 2019;11(48):44999–5006.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma X, Jin Y, Wang Y, Zhang S, Peng D, Yang X, et al. Multimodality molecular imaging-guided tumor border delineation and photothermal remedy evaluation primarily based on graphene oxide-conjugated gold nanoparticles chelated with Gd. Distinction Media Mol Imaging. 2018;2018:9321862.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu F, Li X, Li Y, Qi Y, Yuan H, He J, et al. Designing pH-triggered drug launch iron oxide nanocomposites for MRI-guided photothermal-chemoembolization remedy of liver orthotopic most cancers. Biomater Sci. 2019;7(5):1842–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu YH, Yang J, Meng J, Wang H. Focused MR imaging adopting T1-weighted ultra-small iron oxide nanoparticles for early hepatocellular carcinoma: an in vitro and in vivo examine. Chin Med Sci J. 2020;35(2):142–50.

    PubMed 

    Google Scholar
     

  • Siciliano G, Corricelli M, Iacobazzi RM, Canepa F, Comegna D, Fanizza E, et al. Gold-speckled SPION@SiO(2) nanoparticles embellished with thiocarbohydrates for ASGPR1 concentrating on: in the direction of HCC twin mode imaging potential functions. Chem Eur J. 2020;26(48):11048–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fukuda Ok, Mori Ok, Hasegawa N, Nasu Ok, Ishige Ok, Okamoto Y, et al. Security margin of radiofrequency ablation for hepatocellular carcinoma: a potential examine utilizing magnetic resonance imaging with superparamagnetic iron oxide. Jpn J Radiol. 2019;37(7):555–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang H, Deng L, Liu H, Mai S, Cheng Z, Shi G, et al. Enhanced fluorescence/magnetic resonance twin imaging and gene remedy of liver most cancers utilizing cationized amylose nanoprobe. Mater Right now Bio. 2022;13: 100220.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu Y, Li J, Liu F, Feng L, Yu D, Zhang N. Theranostic polymeric micelles for the prognosis and therapy of hepatocellular carcinoma. J Biomed Nanotechnol. 2015;11(4):613–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Han Y, An Y, Jia G, Wang X, He C, Ding Y, et al. Theranostic micelles primarily based on upconversion nanoparticles for dual-modality imaging and photodynamic remedy in hepatocellular carcinoma. Nanoscale. 2018;10(14):6511–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao H, Wu M, Zhu L, Tian Y, Wu M, Li Y, et al. Cell-penetrating peptide-modified focused drug-loaded phase-transformation lipid nanoparticles mixed with low-intensity centered ultrasound for precision theranostics in opposition to hepatocellular carcinoma. Theranostics. 2018;8(7):1892–910.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li H, Shi S, Wu M, Shen W, Ren J, Mei Z. iRGD peptide-mediated liposomal nanoparticles with photoacoustic/ultrasound dual-modality imaging for precision theranostics in opposition to hepatocellular carcinoma. IJN. 2021;16:6455–75.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, et al. The biology, perform, and functions of exosomes in most cancers. Acta pharmaceutica Sinica B. 2021;11(9):2783–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu Y, Chen Z, Liu C, Yu D, Lu Z, Zhang N. Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI distinction brokers for the prognosis of liver most cancers. Biomaterials. 2011;32(22):5167–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi Z, Chu C, Zhang Y, Su Z, Lin H, Pang X, et al. Self-assembled metal-organic nanoparticles for multimodal imaging-guided photothermal remedy of hepatocellular carcinoma. J Biomed Nanotechnol. 2018;14(11):1934–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Najahi-Missaoui W, Arnold RD. Protected nanoparticles: are we there but? IJMS. 2020. https://doi.org/10.3390/ijms22010385.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan L, Liu J, He Q, Shi J. MSN-mediated sequential vascular-to-cell nuclear-targeted drug supply for environment friendly tumor regression. Adv Mater. 2014;26(39):6742–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu X, Solar Y, Xu S, Gao X, Kong F, Xu Ok, et al. Homotypic cell membrane-cloaked biomimetic nanocarrier for the focused chemotherapy of hepatocellular carcinoma. Theranostics. 2019;9(20):5828–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liang YJ, Yu H, Feng G, Zhuang L, Xi W, Ma M, et al. Excessive-performance poly(lactic-co-glycolic acid)-magnetic microspheres ready by rotating membrane emulsification for transcatheter arterial embolization and magnetic ablation in VX(2) liver tumors. ACS Appl Mater Interfaces. 2017;9(50):43478–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mondal J, Khuda-Bukhsh AR. Cisplatin and farnesol co-encapsulated PLGA nano-particles show enhanced anti-cancer potential in opposition to hepatocellular carcinoma cells in vitro. Mol Biol Rep. 2020;47(5):3615–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yao Q, Dai Z, Hoon Choi J, Kim D. Constructing steady MMP2-responsive multifunctional polymeric micelles by an all-in-one polymer-lipid conjugate for tumor-targeted intracellular drug supply. ACS Appl Mater Interfaces. 2017;9(38):32520–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jin X, Solar P, Tong G, Zhu X. Star polymer-based unimolecular micelles and their utility in bio-imaging and prognosis. Biomaterials. 2018;178:738–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhuang W, Xu Y, Li G. Redox and pH dual-responsive polymeric micelles with aggregation-induced emission function for mobile imaging and chemotherapy. ACS Appl Mater Interfaces. 2018;10(22):18489–98.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang W, Ding Y, Xu H, Xu C, Tong Z, Zhang S, et al. A nanomedicine fabricated from gold nanoparticles-decorated metal-organic framework for cascade chemo/chemodynamic most cancers remedy. Adv Sci. 2020;7(17):2001060.

    Article 

    Google Scholar
     

  • Chen X, Track L, Li X, Zhang L, Li L, Zhang X, Wang C. Co-delivery of hydrophilic/hydrophobic medicine by multifunctional yolk-shell nanoparticles for hepatocellular carcinoma theranostics. Chem Eng J. 2020. https://doi.org/10.1016/j.cej.2020.124416.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalluri R. The biology and performance of exosomes in most cancers. J Clin Investig. 2016;126(4):1208–15.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li C, Xu X. Organic features and medical functions of exosomal non-coding RNAs in hepatocellular carcinoma. CMLS. 2019;76(21):4203–19.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Developments Cell Biol. 2015;25(6):364–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qi Q, Moore JT, Kumar D, Rios-Colon L, Arthur E, Niture S. The function of exosomes within the crosstalk between adipocytes and liver most cancers cells. Cells. 2020. https://doi.org/10.3390/cells9091988.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Q, Zhou L, Lv D, Zhu X, Tang H. Exosome-mediated communication within the tumor microenvironment contributes to hepatocellular carcinoma improvement and development. J Hematol Oncol. 2019;12(1):53.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang T, Feng B, Wang R, Chu X, Abudoureyimu M, Zhou H, et al. Latest progress within the rising function of exosome in hepatocellular carcinoma. Cell Prolif. 2019;52(2):e12541.

    PubMed 
    Article 

    Google Scholar
     

  • He R, Wang Z, Shi W, Yu L, Xia H, Huang Z, et al. Exosomes in hepatocellular carcinoma microenvironment and their potential medical utility worth. Biomed Pharmacother. 2021;138:111529.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ge Y, Mu W, Ba Q, Li J, Jiang Y, Xia Q, et al. Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early prognosis utility. Most cancers Lett. 2020;477:41–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Loh XJ, Lee TC, Dou Q, Deen GR. Utilising inorganic nanocarriers for gene supply. Biomaterials science. 2016;4(1):70–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thomas M, Klibanov AM. Non-viral gene remedy: polycation-mediated DNA supply. Appl Microbiol Biotechnol. 2003;62(1):27–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Titze-de-Almeida SS, Brandão PRP, Faber I, Titze-de-Almeida R. Main RNA interference therapeutics half 1: silencing hereditary transthyretin amyloidosis, with a give attention to Patisiran. Mol Diagn Ther. 2020;24(1):49–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li C, Zhang W, Yang H, Xiang J, Wang X, Wang J. Integrative evaluation of dysregulated lncRNA-associated ceRNA community reveals potential lncRNA biomarkers for human hepatocellular carcinoma. PeerJ. 2020;8: e8758.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang X, Ng HLH, Lu A, Lin C, Zhou L, Lin G, et al. Drug supply system concentrating on superior hepatocellular carcinoma: Present and future. Nanomed Nanotechnol Biol Med. 2016;12(4):853–69.

    CAS 
    Article 

    Google Scholar
     

  • Xu RH, Wei W, Krawczyk M, Wang W, Luo H, Flagg Ok, et al. Circulating tumour DNA methylation markers for prognosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017;16(11):1155–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cai X, Weng S, Guo R, Lin L, Chen W, Zheng Z, et al. Ratiometric electrochemical immunoassay primarily based on inside reference worth for reproducible and delicate detection of tumor marker. Biosens Bioelectron. 2016;81:173–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang YL, Liu FR, Cao JT, Ren SW, Liu YM. Spatial-resolved dual-signal-output electrochemiluminescent ratiometric technique for correct and delicate immunoassay. Biosens Bioelectron. 2018;102:525–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tang B, Wang J, Hutchison JA, Ma L, Zhang N, Guo H, et al. Ultrasensitive, multiplex raman frequency shift immunoassay of liver most cancers biomarkers in physiological media. ACS Nano. 2016;10(1):871–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Coleman RL, Herzog TJ, Chan DW, Munroe DG, Pappas TC, Smith A, et al. Am J Obstet Gynecol. 2016. https://doi.org/10.1016/j.ajog.2016.03.003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Ani INT, Al-Ani HA. Function of Micro-RNA within the regulation of cell polarization in hepatocellular carcinoma. Hum Gene Ther. 2022;33(5–6):301–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee KM, Choi EJ, Kim IA. microRNA-7 will increase radiosensitivity of human most cancers cells with activated EGFR-associated signaling. Radiother Oncol. 2011;101(1):171–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Wit S, van Dalum G, Lenferink AT, Tibbe AG, Hiltermann TJ, Groen HJ, et al. The detection of EpCAM(+) and EpCAM(-) circulating tumor cells. Sci Rep. 2015;5:12270.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang X, Oishi N, Shimakami T, Yamashita T, Honda M, Murakami S, et al. Hepatitis B virus X protein induces hepatic stem cell-like options in hepatocellular carcinoma by activating KDM5B. World J Gastroenterol. 2017;23(18):3252–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Piñero F, Dirchwolf M, Pessôa MG. Biomarkers in hepatocellular carcinoma: prognosis, prognosis and therapy response evaluation. Cells. 2020. https://doi.org/10.3390/cells9061370.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minami Y, Nishida N, Kudo M. Therapeutic response evaluation of RFA for HCC: contrast-enhanced US, CT and MRI. World J Gastroenterol. 2014;20(15):4160–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li J, Wang J, Yu S, Yuan G, He S. Letter to the Editor: hepatocellular carcinoma surveillance in high-risk sufferers with cirrhosis: contrast-enhanced ultrasound could also be a alternative. Hepatology. 2020;71(1):392.

    PubMed 
    Article 

    Google Scholar
     

  • Baroni S, Ruggiero MR, Bitonto V, Broche LM, Lurie DJ, Aime S, et al. In vivo evaluation of tumour related macrophages in murine melanoma obtained by low-field relaxometry within the presence of iron oxide particles. Biomaterials. 2020;236: 119805.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Z, Wu P, He Z, He H, Rong W, Li J, et al. Mesoporous silica nanoparticles with lactose-mediated concentrating on impact to ship platinum(iv) prodrug for liver most cancers remedy. J Mater Chem B. 2017;5(36):7591–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shao D, Li J, Zheng X, Pan Y, Wang Z, Zhang M, et al. Janus “nano-bullets” for magnetic concentrating on liver most cancers chemotherapy. Biomaterials. 2016;100:118–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rahman M, Almalki WH, Alrobaian M, Iqbal J, Alghamdi S, Alharbi KS, et al. Nanocarriers-loaded with pure actives as newer therapeutic interventions for therapy of hepatocellular carcinoma. Knowledgeable Opin Drug Deliv. 2021;18(4):489–513.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu H, Xing H, Wu MC, Shen F, Chen Y, Yang T. Extracellular-vesicles delivered tumor-specific sequential nanocatalysts can be utilized for MRI-informed nanocatalytic Remedy of hepatocellular carcinoma. Theranostics. 2021;11(1):64–78.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dou J, Zhou Q, Ren X, Wu Q, Tang S, Zhou H, et al. Microwave responsive nanoplatform by way of P-selectin mediated drug supply for therapy of hepatocellular carcinoma with distant metastasis. Nano Lett. 2019;19(5):2914–27.

    PubMed 
    Article 

    Google Scholar
     

  • Gadzhimagomedova Z, Zolotukhin P, Package O, Kirsanova D, Soldatov A. Nanocomposites for X-Ray photodynamic remedy. IJMS. 2020. https://doi.org/10.3390/ijms21114004.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirsanova DY, Gadzhimagomedova ZM, Maksimov AY, Soldatov AV. Nanomaterials for deep tumor therapy. Mini Rev Med Chem. 2021;21(6):677–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sebak AA, El-Shenawy BM, El-Safy S, El-Shazly M. From passive concentrating on to personalised nanomedicine: multidimensional insights on nanoparticles’ interplay with the tumor microenvironment. Curr Pharm Biotechnol. 2021;22(11):1444–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Y, Wang Z, Xu C, Tian H, Chen X. A disassembling technique overcomes the EPR impact and renal clearance dilemma of the multifunctional theranostic nanoparticles for most cancers remedy. Biomaterials. 2019;197:284–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang L, Zhang M, Zhou L, Han Q, Chen X, Li S, et al. Twin drug supply and sequential launch by amphiphilic Janus nanoparticles for liver most cancers theranostics. Biomaterials. 2018;181:113–25.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miao L, Qi J, Zhao Q, Wu QN, Wei DL, Wei XL, et al. Focusing on the STING pathway in tumor-associated macrophages regulates innate immune sensing of gastric most cancers cells. Theranostics. 2020;10(2):498–515.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as therapy targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399–416.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Olesch C, Ringleb J, Ören B, Döring C, Savai R, Jung M, et al. S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis by way of NLRP3/IL-1β. J Exp Med. 2017;214(9):2695–713.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Petty AJ, Yang Y. Tumor-associated macrophages: implications in most cancers immunotherapy. Immunotherapy. 2017;9(3):289–302.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 2017;114:206–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Ok, Meng X, Yang Z, Dong H, Zhang X. Enhanced most cancers remedy by hypoxia-responsive copper metal-organic frameworks nanosystem. Biomaterials. 2020;258: 120278.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu W, Wang J, Li Q, Wu C, Wu L, Li Ok, et al. Most cancers cell membrane-coated nanogels as a redox/pH dual-responsive drug service for tumor-targeted remedy. J Mater Chem B. 2021;9(38):8031–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ding Y, Solar Z, Tong Z, Zhang S, Min J, Xu Q, et al. Tumor microenvironment-responsive multifunctional peptide coated ultrasmall gold nanoparticles and their utility in most cancers radiotherapy. Theranostics. 2020;10(12):5195–208.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma W, Yu M, Li Z, Li C, Liu H, Xiao H, et al. illuminating platinum transportation whereas maximizing therapeutic efficacy by gold nanoclusters by way of simultaneous near-infrared-i/ii imaging and glutathione scavenging. ACS Nano. 2020;14(10):13536–47.

    PubMed 
    Article 

    Google Scholar
     

  • Yang Y, Liu X, Ma W, Xu Q, Chen G, Wang Y, et al. Gentle-activatable liposomes for repetitive on-demand drug launch and immunopotentiation in hypoxic tumor remedy. Biomaterials. 2021;265: 120456.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang X, Wang ZY, Xie Z, Solar T, Han J, Liu S. Tailored semiconducting polymers for second near-infrared photothermal remedy of orthotopic liver most cancers. ACS Nano. 2019;13(6):7345–54.

    PubMed 
    Article 

    Google Scholar
     

  • Zhang Y, Wang X. Genetically engineered magnetic nanocages for most cancers magneto-catalytic theranostics. Nat Commun. 2020;11(1):5421.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lyu J, Wang Z, Xu W, Wang J, Li Q, Wu C, et al. Most cancers cell membrane-coated nanogels as a redox/pH dual-responsive drug service for tumor-targeted remedy. J Mater Chem. 2021;9(38):8031–7.


    Google Scholar
     

  • Day NB, Wixson WC, Shields CWT. Magnetic programs for most cancers immunotherapy. Acta Pharm Sin B. 2021;11(8):2172–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yu H, Gao A, Chen B, Gao J, Zhou F, Saeed M, et al. Sheddable prodrug vesicles combating adaptive immune resistance for improved photodynamic immunotherapy of most cancers. Nano Lett. 2020;20(1):353–62.

    PubMed 
    Article 

    Google Scholar
     

  • Hu X, Chen Z, Jin AJ, Yang Z, Gan D, Wu A, et al. Rational design of all-organic nanoplatform for extremely environment friendly MR/NIR-II imaging-guided most cancers phototheranostics. Small. 2021;17(12):e2007566.

    PubMed 
    Article 

    Google Scholar
     

  • Niessen C, Thumann S, Beyer L, Pregler B, Kramer J, Lang S, et al. Percutaneous irreversible electroporation: long-term survival evaluation of 71 sufferers with inoperable malignant hepatic tumors. Sci Rep. 2017;7:43687.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin Z, Wen Y, Xiong L, Yang T, Zhao P, Tan L, et al. Intratumoral H(2)O(2)-triggered launch of CO from a metallic carbonyl-based nanomedicine for environment friendly CO remedy. Chem Commun (Camb). 2017;53(40):5557–60.

    CAS 
    Article 

    Google Scholar
     

  • Sung YC, Jin PR, Chu LA. Supply of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat Nanotechnol. 2019;14(12):1160–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu Y, Lv T, Ma Y, Xu J, Zhang Y. Nanoscale coordination polymers for synergistic no and chemodynamic remedy of liver most cancers. Nano Lett. 2019;19(4):2731–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cui Y, Xu J, Cheng M, Liao X, Peng S. Evaluation of CRISPR/Cas9 sgRNA design instruments. Interdiscip Sci. 2018;10(2):455–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sen CK, Roy S. miRNA: licensed to kill the messenger. DNA Cell Biol. 2007;26(4):193–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kong H, Ju E, Yi Ok, Xu W, Lao YH, Cheng D, et al. Superior nanotheranostics of CRISPR/Cas for viral hepatitis and hepatocellular carcinoma. Adv Sci. 2021;8(24):e2102051.

    Article 

    Google Scholar
     

  • Mou H, Ozata DM, Smith JL, Sheel A, Kwan SY, Hough S, et al. CRISPR-SONIC: focused somatic oncogene knock-in permits speedy in vivo most cancers modeling. Genome Med. 2019;11(1):21.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu S, Cheng Q. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA supply and CRISPR-Cas gene modifying. Nat Mater. 2021;20(5):701–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carlson-Stevermer J, Kelso R. CRISPRoff permits spatio-temporal management of CRISPR modifying. Nat Commun. 2020;11(1):5041.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Whitehead KA, Langer R, Anderson DG. Pulling down obstacles: advances in siRNA supply. Nat Rev Drug Discovery. 2009;8(2):129–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Track E, Lee SK, Wang J, Ince N, Ouyang N, Min J, et al. RNA interference concentrating on Fas protects mice from fulminant hepatitis. Nat Med. 2003;9(3):347–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu H, Chen Z, Jin W, Barve A, Wan YY, Cheng Ok. Silencing of α-complex protein-2 reverses alcohol- and cytokine-induced fibrogenesis in hepatic stellate cells. Liver analysis. 2017;1(1):70–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jing Y, Shishkov A, Ponnappa BC. Inhibition of tumor necrosis issue alpha secretion in rat Kupffer cells by siRNA: in vivo efficacy of siRNA-liposomes. Biochem Biophys Acta. 2008;1780(1):34–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi W, Su L, Li Q, Solar L, Lv J, Li J, et al. Suppression of toll-like receptor 2 expression inhibits the bioactivity of human hepatocellular carcinoma. Tumour Biol. 2014;35(10):9627–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mehdizadeh A, Somi MH, Darabi M, Farajnia S, Akbarzadeh A, Montazersaheb S, et al. Liposome-mediated RNA interference supply in opposition to Erk1 and Erk2 doesn’t equally promote chemosensitivity in human hepatocellular carcinoma cell line HepG2. Artif Cells Nanomed Biotechnol. 2017;45(8):1612–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao Y, Jian W, Gao W, Zheng YX, Wang YK, Zhou ZQ, et al. RNAi silencing of c-Myc inhibits cell migration, invasion, and proliferation in HepG2 human hepatocellular carcinoma cell line: c-Myc silencing in hepatocellular carcinoma cell. Most cancers Cell Int. 2013;13(1):23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee YH, Choose AD, Search engine marketing D, Kitade M, Gómez-Quiroz LE, Ishikawa T, et al. Molecular concentrating on of CSN5 in human hepatocellular carcinoma: a mechanism of therapeutic response. Oncogene. 2011;30(40):4175–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen J, Xia H, Zhang X, Karthik S, Pratap SV, Ooi LL, et al. ECT2 regulates the Rho/ERK signalling axis to advertise early recurrence in human hepatocellular carcinoma. J Hepatol. 2015;62(6):1287–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Ok, Lin SY, Brunicardi FC, Seu P. Use of RNA interference to focus on cyclin E-overexpressing hepatocellular carcinoma. Can Res. 2003;63(13):3593–7.

    CAS 

    Google Scholar
     

  • Farra R, Dapas B, Pozzato G, Giansante C, Heidenreich O, Uxa L, et al. Serum response issue depletion impacts the proliferation of the hepatocellular carcinoma cells HepG2 and JHH6. Biochimie. 2010;92(5):455–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bogorad RL, Yin H, Zeigerer A, Nonaka H, Ruda VM, Zerial M, et al. Nanoparticle-formulated siRNA concentrating on integrins inhibits hepatocellular carcinoma development in mice. Nat Commun. 2014;5:3869.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sass G, Leukel P, Schmitz V, Raskopf E, Ocker M, Neureiter D, et al. Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor progress in livers of mice. Int J Most cancers. 2008;123(6):1269–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raskopf E, Vogt A, Sauerbruch T, Schmitz V. siRNA concentrating on VEGF inhibits hepatocellular carcinoma progress and tumor angiogenesis in vivo. J Hepatol. 2008;49(6):977–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xie B, Xing R, Chen P, Gou Y, Li S, Xiao J, et al. Down-regulation of c-Met expression inhibits human HCC cells progress and invasion by RNA interference. J Surg Res. 2010;162(2):231–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao J, Yu Y, Zhang Y, Track J, Chen H, Li W, et al. EGFR-specific PEGylated immunoliposomes for energetic siRNA supply in hepatocellular carcinoma. Biomaterials. 2012;33(1):270–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kang D, Han Z, Oh GH, Joo Y, Choi HJ, Track JJ. Down-regulation of TGF-β expression sensitizes the resistance of hepatocellular carcinoma cells to sorafenib. Yonsei Med J. 2017;58(5):899–909.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yu Q, Liu ZY, Chen Q, Lin JS. Mcl-1 as a possible therapeutic goal for human hepatocelluar carcinoma. J Huazhong Univ Sci Technolog Med Sci. 2016;36(4):494–500.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kuntzen C, Sonuc N, De Toni EN, Opelz C, Mucha SR, Gerbes AL, et al. Inhibition of c-Jun-N-terminal-kinase sensitizes tumor cells to CD95-induced apoptosis and induces G2/M cell cycle arrest. Can Res. 2005;65(15):6780–8.

    CAS 
    Article 

    Google Scholar
     

  • Lu WJ, Chua MS, So SK. Suppressing N-Myc downstream regulated gene 1 reactivates senescence signaling and inhibits tumor progress in hepatocellular carcinoma. Carcinogenesis. 2014;35(4):915–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Ok, Chen J, Chen D, Huang J, Feng B, Han S, et al. Aurora-A promotes chemoresistance in hepatocelluar carcinoma by concentrating on NF-kappaB/microRNA-21/PTEN signaling pathway. Oncotarget. 2014;5(24):12916–35.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morales A, París R, Villanueva A, Llacuna L, García-Ruiz C, Fernández-Checa JC. Pharmacological inhibition or small interfering RNA concentrating on acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor progress in vivo. Oncogene. 2007;26(6):905–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kanda T, Yokosuka O, Imazeki F, Arai M, Saisho H. Enhanced sensitivity of human hepatoma cells to 5-fluorouracil by small interfering RNA concentrating on Bcl-2. DNA Cell Biol. 2005;24(12):805–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Takahashi Y, Nishikawa M, Takakura Y. Inhibition of tumor cell progress within the liver by RNA interference-mediated suppression of HIF-1alpha expression in tumor cells and hepatocytes. Gene Ther. 2008;15(8):572–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu X, Qin W, Li J, Tan N, Pan D, Zhang H, et al. The expansion and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA concentrating on to the subunit ATP6L of proton pump. Can Res. 2005;65(15):6843–9.

    CAS 
    Article 

    Google Scholar
     

  • Salvi A, Arici B, De Petro G, Barlati S. Small interfering RNA urokinase silencing inhibits invasion and migration of human hepatocellular carcinoma cells. Mol Most cancers Ther. 2004;3(6):671–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li C, Wang J, Zhang H, Zhu M, Chen F, Hu Y, et al. Interferon-stimulated gene 15 (ISG15) is a set off for tumorigenesis and metastasis of hepatocellular carcinoma. Oncotarget. 2014;5(18):8429–41.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Perche F, Biswas S, Patel NR, Torchilin VP. Hypoxia-responsive copolymer for siRNA supply. Strategies Mol Biol. 2016;1372:139–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Voutila J, Reebye V, Roberts TC, Protopapa P, Andrikakou P, Blakey DC, et al. Improvement and mechanism of small activating RNA concentrating on CEBPA, a novel therapeutic in medical trials for liver most cancers. Mol Ther. 2017;25(12):2705–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Setten RL, Lightfoot HL, Habib NA, Rossi JJ. Improvement of MTL-CEBPA: small activating RNA drug for hepatocellular carcinoma. Curr Pharm Biotechnol. 2018;19(8):611–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lloyd P, Felstead S, Vasara J, Habib R, Sarker D, Plummer R, et al. MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α, in sufferers with superior liver most cancers: a first-in-human, multicenter, open-label section I trial. Clin Most cancers Res. 2020;26(15):3936–46.

    PubMed 
    Article 

    Google Scholar
     

  • Xiao Y, Chen J. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for efficient most cancers remedy. Nat Commun. 2022;13(1):758.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang C, Yin M, Xu G, Lin WJ, Chen J, Zhang Y, et al. Biodegradable polymers as a noncoding mirna nanocarrier for a number of concentrating on remedy of human hepatocellular carcinoma. Adv Healthcare Mater. 2019;8(8): e1801318.

    Article 

    Google Scholar
     

  • Hammond SM, Aartsma-Rus A. Supply of oligonucleotide-based therapeutics: challenges and alternatives. EMBO Mol Med. 2021;13(4):e13243.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lv H, Wang T, Ma F, Zhang Ok, Gao T, Pei R. Aptamer-functionalized focused siRNA supply system for tumor immunotherapy. Biomed Mater. 2022. https://doi.org/10.1088/1748-605X/ac5415.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Chen HN, Wang Ok, Zhang L, Huang Z, Liu J, et al. Ketoconazole exacerbates mitophagy to induce apoptosis by downregulating cyclooxygenase-2 in hepatocellular carcinoma. J Hepatol. 2019;70(1):66–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shamay Y, Shah J, Işık M, Mizrachi A, Leibold J, Tschaharganeh DF, et al. Quantitative self-assembly prediction yields focused nanomedicines. Nat Mater. 2018;17(4):361–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deshpande S, Spoelstra WK, van Doorn M, Kerssemakers J, Dekker C. Mechanical division of cell-sized liposomes. ACS Nano. 2018;12(3):2560–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mohamed NK, Hamad MA, Hafez MZ, Wooley KL, Elsabahy M. Nanomedicine in administration of hepatocellular carcinoma: challenges and alternatives. Int J Most cancers. 2017;140(7):1475–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu J, Wang J, Ling D. Floor engineering of nanoparticles for focused supply to hepatocellular carcinoma. Small. 2018. https://doi.org/10.1002/smll.201702037.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments