Yoon, J. et al. Moist-style superhydrophobic antifogging coatings for optical sensors. Adv. Mater. 32, e2002710 (2020).
Howarter, J. A. & Youngblood, J. P. Self-cleaning and subsequent technology anti-fog surfaces and coatings. Macromol. Speedy. Comm. 29, 455–466 (2008).
Durán, I. R. & Laroche, G. Present traits, challenges, and views of anti-fogging expertise: floor and materials design, fabrication methods, and past. Prog. Mater. Sci. 99, 106–186 (2019).
Leach, R. N., Stevens, F., Langford, S. C. & Dickinson, J. T. Dropwise condensation: experiments and simulations of nucleation and progress of water drops in a cooling system. Langmuir 22, 8864–8872 (2006).
Lin, S. et al. Stretchable anti‐fogging tapes for numerous clear supplies. Adv. Funct. Mater. 31, 2103551 (2021).
Cebeci, F. C., Wu, Z., Zhai, L., Cohen, R. E. & Rubner, M. F. Nanoporosity-driven superhydrophilicity: a method to create multifunctional antifogging coatings. Langmuir 22, 2856–2862 (2006).
Tzianou, M., Thomopoulos, G., Vourdas, N., Ellinas, Okay. & Gogolides, E. Tailoring wetting properties at extremes states to acquire antifogging performance. Adv. Funct. Mater. 31, 2006687 (2021).
Nuraje, N., Asmatulu, R., Cohen, R. E. & Rubner, M. F. Sturdy antifog movies from layer-by-layer molecularly blended hydrophilic polysaccharides. Langmuir 27, 782–791 (2011).
Mouterde, T. et al. Antifogging skills of mannequin nanotextures. Nat. Mater. 16, 658–663 (2017).
Liu, M., Wang, S. & Jiang, L. Nature-inspired superwettability programs. Nat. Rev. Mater. 2, 17036 (2017).
Verho, T. et al. Mechanically sturdy superhydrophobic surfaces. Adv. Mater. 23, 673–678 (2011).
Wang, D. et al. Design of strong superhydrophobic surfaces. Nature 582, 55–59 (2020).
Mitridis, E., Lambley, H., Tröber, S., Schutzius, T. M. & Poulikakos, D. Clear photothermal metasurfaces amplifying superhydrophobicity by absorbing daylight. ACS Nano 14, 11712–11721 (2020).
Cassie, A. B. D. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).
Wenzel, R. N. Resistance of strong surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936).
Papadopoulos, P., Mammen, L., Deng, X., Vollmer, D. & Butt, H.-J. How superhydrophobicity breaks down. Proc. Natl Acad. Sci. USA 110, 3254–3258 (2013).
Attinger, D., et al Floor engineering for part change warmth switch: a assessment. MRS Power Maintain. 1, E4 (2014).
Fletcher, N. H. The Physics of Rainclouds (Cambridge College Press, 1962).
Fletcher, N. H. The Chemical Physics of Ice (Cambridge Univ. Press, 2010).
Qi, H. et al. Bioinspired multifunctional protein coating for antifogging, self-cleaning, and antimicrobial properties. ACS Appl. Mater. Inter. 11, 24504–24511 (2019).
Liu, Y. et al. Strong photothermal coating technique for environment friendly ice removing. ACS Appl. Mater. Inter. 12, 46981–46990 (2020).
Xue, C.-H. et al. Fabrication of superhydrophobic photothermal conversion material by way of layer-by-layer meeting of carbon nanotubes. Cellulose 28, 5107–5121 (2021).
Cai, X. et al. Au nanorod photosensitized La2Ti2O7 nanosteps: successive floor heterojunctions boosting seen to near-infrared photocatalytic H2 evolution. ACS Catal. 8, 122–131 (2018).
Wang, L., Xu, X., Cheng, Q., Dou, S. X. & Du, Y. Close to-infrared-driven photocatalysts: design, development, and functions. Small 17, e1904107 (2021).
Nishijima, Y., Ueno, Okay., Yokota, Y., Murakoshi, Okay. & Misawa, H. Plasmon-assisted photocurrent technology from seen to near-infrared wavelength utilizing a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett. 1, 2031–2036 (2010).
Li, W. et al. Clear selective photothermal coatings for antifogging functions. Cell Rep. Phys. Sci. 2, 100435 (2021).
Mitridis, E. et al. Metasurfaces leveraging photo voltaic power for icephobicity. ACS Nano 12, 7009–7017 (2018).
Walker, C. et al. Clear metasurfaces counteracting fogging by harnessing daylight. Nano Lett. 19, 1595–1604 (2019).
Öktem, G., Balan, A., Baran, D. & Toppare, L. Donor-acceptor kind random copolymers for full seen gentle absorption. Chem. Commun. 47, 3933–3935 (2011).
Wu, D. & Chen, J. Broadening bandwidths of few-layer absorbers by superimposing two high-loss resonators. Nanoscale Res. Lett. 16, 26 (2021).
Zhang, H. et al. Photo voltaic anti-icing floor with enhanced condensate self-removing at excessive environmental situations. Proc.Natl Acad. Sci. USA 118, e2100978118 (2021).
Wu, S. et al. Superhydrophobic photothermal icephobic surfaces based mostly on candle soot. Proc. Natl Acad. Sci. USA 117, 11240–11246 (2020).
Gao, H. et al. Plasmonic broadband excellent absorber for seen gentle photo voltaic cells software. Plasmonics 15, 573–580 (2020).
Han, M., Kim, B., Lim, H., Jang, H. & Kim, E. Clear photothermal heaters from a soluble NIR-absorbing diimmonium salt. Adv. Mater. 32, e1905096 (2020).
Li, M., Zhao, Z., Fang, X., Zhang, Z. & Deng, M. Clear hydrophobic thermal insulation CsxWO3–ZnO–SiO2 coatings: power saving, anti-dust and anti-fogging efficiency. Mater. Res. Specific 8, 25004 (2021).
Fan, X., Ding, Y., Liu, Y., Liang, J. & Chen, Y. Plasmonic Ti3C2Tx MXene allows extremely environment friendly photothermal conversion for healable and clear wearable machine. ACS Nano 13, 8124–8134 (2019).
Jeffers, G., Dubson, M. A. & Duxbury, P. M. Island‐to‐percolation transition throughout progress of metallic movies. J. Appl. Phys. 75, 5016–5020 (1994).
Gaspar, D. et al. Affect of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation. Sci. Rep. 3, 1469 (2013).
Zhou, L. et al. Self-assembly of extremely environment friendly, broadband plasmonic absorbers for photo voltaic steam technology. Sci. Adv. 2, e1501227 (2016).
Halas, N. Taking part in with plasmons: tuning the optical resonant properties of metallic nanoshells. MRS Bull. 30, 362–367 (2005).
Sobhani, A. et al. Narrowband photodetection within the near-infrared with a plasmon-induced scorching electron machine. Nat. Commun. 4, 1643 (2013).
Lafait, J., Berthier, S., Sella, C. & Vien, T. Okay. Pt–Al2O3 selective absorber coatings for photothermal conversion as much as 600 °C. Vacuum 36, 125–127 (1986).
Brouers, Clerc, Giraud, Laugier & Randriamantany Dielectric and optical properties near the percolation threshold. II. Phys. Rev. B 47, 666–673 (1993).
Atay, T., Tune, J.-H. & Nurmikko, A. V. Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interplay to conductively coupled regime. Nano Lett. 4, 1627–1631 (2004).
Dusemund, B., Hoffmann, A., Salzmann, T., Kreibig, U. & Schmid, G. Cluster matter: the transition of optical elastic scattering to common reflection. Z. Phys. D 20, 305–308 (1991).
Simon, T. et al. Aluminum Cayley timber as scalable, broadband, multiresonant optical antennas. Proc. Natl Acad. Sci. USA 119, e2116833119 (2022).
Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Gentle by Small Particles (Wiley, 1993).
Kolwas, Okay. & Derkachova, A. Influence of the interband transitions in gold and silver on the dynamics of propagating and localized floor plasmons. Nanomaterials (Basel) 10, 1411 (2020).
Moran, M. J. Fundamentals of Engineering Thermodynamics eighth edn (Wiley, 2014).
Buck, A. L. New equations for computing vapor strain and enhancement issue. J. Appl. Meteor. 20, 1527–1532 (1981).