Tuesday, June 6, 2023
HomeNanotechnologyClear sunlight-activated antifogging metamaterials | Nature Nanotechnology

Clear sunlight-activated antifogging metamaterials | Nature Nanotechnology


  • Yoon, J. et al. Moist-style superhydrophobic antifogging coatings for optical sensors. Adv. Mater. 32, e2002710 (2020).

    Article 

    Google Scholar
     

  • Howarter, J. A. & Youngblood, J. P. Self-cleaning and subsequent technology anti-fog surfaces and coatings. Macromol. Speedy. Comm. 29, 455–466 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Durán, I. R. & Laroche, G. Present traits, challenges, and views of anti-fogging expertise: floor and materials design, fabrication methods, and past. Prog. Mater. Sci. 99, 106–186 (2019).

    Article 

    Google Scholar
     

  • Leach, R. N., Stevens, F., Langford, S. C. & Dickinson, J. T. Dropwise condensation: experiments and simulations of nucleation and progress of water drops in a cooling system. Langmuir 22, 8864–8872 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Lin, S. et al. Stretchable anti‐fogging tapes for numerous clear supplies. Adv. Funct. Mater. 31, 2103551 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cebeci, F. C., Wu, Z., Zhai, L., Cohen, R. E. & Rubner, M. F. Nanoporosity-driven superhydrophilicity: a method to create multifunctional antifogging coatings. Langmuir 22, 2856–2862 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Tzianou, M., Thomopoulos, G., Vourdas, N., Ellinas, Okay. & Gogolides, E. Tailoring wetting properties at extremes states to acquire antifogging performance. Adv. Funct. Mater. 31, 2006687 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nuraje, N., Asmatulu, R., Cohen, R. E. & Rubner, M. F. Sturdy antifog movies from layer-by-layer molecularly blended hydrophilic polysaccharides. Langmuir 27, 782–791 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Mouterde, T. et al. Antifogging skills of mannequin nanotextures. Nat. Mater. 16, 658–663 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M., Wang, S. & Jiang, L. Nature-inspired superwettability programs. Nat. Rev. Mater. 2, 17036 (2017).

  • Verho, T. et al. Mechanically sturdy superhydrophobic surfaces. Adv. Mater. 23, 673–678 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wang, D. et al. Design of strong superhydrophobic surfaces. Nature 582, 55–59 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mitridis, E., Lambley, H., Tröber, S., Schutzius, T. M. & Poulikakos, D. Clear photothermal metasurfaces amplifying superhydrophobicity by absorbing daylight. ACS Nano 14, 11712–11721 (2020).

    Article 

    Google Scholar
     

  • Cassie, A. B. D. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).

    Article 
    CAS 

    Google Scholar
     

  • Wenzel, R. N. Resistance of strong surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936).

    Article 
    CAS 

    Google Scholar
     

  • Papadopoulos, P., Mammen, L., Deng, X., Vollmer, D. & Butt, H.-J. How superhydrophobicity breaks down. Proc. Natl Acad. Sci. USA 110, 3254–3258 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Attinger, D., et al Floor engineering for part change warmth switch: a assessment. MRS Power Maintain. 1, E4 (2014).

  • Fletcher, N. H. The Physics of Rainclouds (Cambridge College Press, 1962).

  • Fletcher, N. H. The Chemical Physics of Ice (Cambridge Univ. Press, 2010).

  • Qi, H. et al. Bioinspired multifunctional protein coating for antifogging, self-cleaning, and antimicrobial properties. ACS Appl. Mater. Inter. 11, 24504–24511 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Strong photothermal coating technique for environment friendly ice removing. ACS Appl. Mater. Inter. 12, 46981–46990 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xue, C.-H. et al. Fabrication of superhydrophobic photothermal conversion material by way of layer-by-layer meeting of carbon nanotubes. Cellulose 28, 5107–5121 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cai, X. et al. Au nanorod photosensitized La2Ti2O7 nanosteps: successive floor heterojunctions boosting seen to near-infrared photocatalytic H2 evolution. ACS Catal. 8, 122–131 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L., Xu, X., Cheng, Q., Dou, S. X. & Du, Y. Close to-infrared-driven photocatalysts: design, development, and functions. Small 17, e1904107 (2021).

    Article 

    Google Scholar
     

  • Nishijima, Y., Ueno, Okay., Yokota, Y., Murakoshi, Okay. & Misawa, H. Plasmon-assisted photocurrent technology from seen to near-infrared wavelength utilizing a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett. 1, 2031–2036 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. Clear selective photothermal coatings for antifogging functions. Cell Rep. Phys. Sci. 2, 100435 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mitridis, E. et al. Metasurfaces leveraging photo voltaic power for icephobicity. ACS Nano 12, 7009–7017 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Walker, C. et al. Clear metasurfaces counteracting fogging by harnessing daylight. Nano Lett. 19, 1595–1604 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Öktem, G., Balan, A., Baran, D. & Toppare, L. Donor-acceptor kind random copolymers for full seen gentle absorption. Chem. Commun. 47, 3933–3935 (2011).

    Article 

    Google Scholar
     

  • Wu, D. & Chen, J. Broadening bandwidths of few-layer absorbers by superimposing two high-loss resonators. Nanoscale Res. Lett. 16, 26 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Photo voltaic anti-icing floor with enhanced condensate self-removing at excessive environmental situations. Proc.Natl Acad. Sci. USA 118, e2100978118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wu, S. et al. Superhydrophobic photothermal icephobic surfaces based mostly on candle soot. Proc. Natl Acad. Sci. USA 117, 11240–11246 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gao, H. et al. Plasmonic broadband excellent absorber for seen gentle photo voltaic cells software. Plasmonics 15, 573–580 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Han, M., Kim, B., Lim, H., Jang, H. & Kim, E. Clear photothermal heaters from a soluble NIR-absorbing diimmonium salt. Adv. Mater. 32, e1905096 (2020).

    Article 

    Google Scholar
     

  • Li, M., Zhao, Z., Fang, X., Zhang, Z. & Deng, M. Clear hydrophobic thermal insulation CsxWO3–ZnO–SiO2 coatings: power saving, anti-dust and anti-fogging efficiency. Mater. Res. Specific 8, 25004 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fan, X., Ding, Y., Liu, Y., Liang, J. & Chen, Y. Plasmonic Ti3C2Tx MXene allows extremely environment friendly photothermal conversion for healable and clear wearable machine. ACS Nano 13, 8124–8134 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jeffers, G., Dubson, M. A. & Duxbury, P. M. Island‐to‐percolation transition throughout progress of metallic movies. J. Appl. Phys. 75, 5016–5020 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Gaspar, D. et al. Affect of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation. Sci. Rep. 3, 1469 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, L. et al. Self-assembly of extremely environment friendly, broadband plasmonic absorbers for photo voltaic steam technology. Sci. Adv. 2, e1501227 (2016).

    Article 

    Google Scholar
     

  • Halas, N. Taking part in with plasmons: tuning the optical resonant properties of metallic nanoshells. MRS Bull. 30, 362–367 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Sobhani, A. et al. Narrowband photodetection within the near-infrared with a plasmon-induced scorching electron machine. Nat. Commun. 4, 1643 (2013).

    Article 

    Google Scholar
     

  • Lafait, J., Berthier, S., Sella, C. & Vien, T. Okay. Pt–Al2O3 selective absorber coatings for photothermal conversion as much as 600 °C. Vacuum 36, 125–127 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Brouers, Clerc, Giraud, Laugier & Randriamantany Dielectric and optical properties near the percolation threshold. II. Phys. Rev. B 47, 666–673 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Atay, T., Tune, J.-H. & Nurmikko, A. V. Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interplay to conductively coupled regime. Nano Lett. 4, 1627–1631 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Dusemund, B., Hoffmann, A., Salzmann, T., Kreibig, U. & Schmid, G. Cluster matter: the transition of optical elastic scattering to common reflection. Z. Phys. D 20, 305–308 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Simon, T. et al. Aluminum Cayley timber as scalable, broadband, multiresonant optical antennas. Proc. Natl Acad. Sci. USA 119, e2116833119 (2022).

  • Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Gentle by Small Particles (Wiley, 1993).

  • Kolwas, Okay. & Derkachova, A. Influence of the interband transitions in gold and silver on the dynamics of propagating and localized floor plasmons. Nanomaterials (Basel) 10, 1411 (2020).

  • Moran, M. J. Fundamentals of Engineering Thermodynamics eighth edn (Wiley, 2014).

  • Buck, A. L. New equations for computing vapor strain and enhancement issue. J. Appl. Meteor. 20, 1527–1532 (1981).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments